INESEM Business School
Contactar por whatsappWhatsapp

Contacta con nosotros

Teléfono de INESEM 958 050 205
Google Colab
Te ayudamos a elegir tu formación

Google Colab y la programación colaborativa en la nube con Python

Trabajar con algoritmos de inteligencia artificial y el manejo de redes neuronales en la gran mayoría de casos necesita de un coste computacional muy elevado.

Esto hace que, o bien dispongas de un equipo con grandes prestaciones y, por tanto, que su precio sea muy elevado, o utilizar uno de los conceptos más novedosos e interesantes de los últimos tiempos, la programación colaborativa, gracias a Google Colab.

¿Qué es Google Colab?

Google Colab es un entorno de codificación que crea un Jupyter Notebook para trabajar, similar a un cuaderno en línea, que es muy utilizado para el aprendizaje automático y el análisis de datos con Python. Es utilizado principalmente por científicos de datos e ingenieros de Machine Learning.

Incorpora por defecto multitud de bibliotecas de aprendizaje automático y ofrece acceso a CPU de servidor, GPU de última generación y TPU de forma gratuita.

Incluso si con las características que ofrece en su versión gratuita no es suficiente para ti, existe un plan Google Colab Pro que ofrece acceso a funciones mejoradas y otorgan más potencia de procesamiento, RAM y memoria.

Ventajas y desventajas de utilizar Google Colab

Las principales ventajas de utilizar Google Colab son:

  • Servicio gratuito
  • Facilidad de uso
  • Acceso a GPU / TPU
  • Compartir código gracias a la programación colaborativa
  • Visualizaciones gráficas sencillas

En contrapartida, sus mayores desventajas son:

  • El uso de GPU / TPU es limitado (aunque siempre está la opción de la cuenta Premium)
  • Las configuraciones de rendimiento no son las más potentes del mercado
  • No es el mejor entorno de depuración
  • Es complejo su aplicación al Big Data
  • En cada ejecución hay que volver a instalar dependencias

Empezar a trabajar con Google Colab

Para comenzar con Google Colab es muy sencillo, simplemente debes tener una cuenta de Google, iniciar sesión e ir a la cuenta de Google Drive.

Luego, en la esquina superior izquierda, seleccione "Nuevo", luego "Más" en el panel desplegable y luego tienes que seleccionar “Conectar más aplicaciones”, buscar "Google Colaboratory" e instalarla.

Instalación Google Colab

Una vez instalado te aparecerá en el desplegable de la opción “Más” la opción de “Google Colaboratory”.

Abrir Google Colab

 Al pulsar abrirá un cuaderno Python nuevo en el que se puede modificar su nombre y configurar aspectos como, por ejemplo, cambiar el tema a oscuro, combinaciones de teclas y colores en el editor o tamaño de fuente.

Nuevo cuaderno Google Colab

Configuraciones Google Colab

Atajos y barra de tareas

Google Colab cuenta con una serie de atajos para ahorrar tiempo (para usuarios Mac CTRL es Comand):

  • Paleta de comandos: Ctrl+Shift+P
  • Agregar un comentario: Ctrl+Alt+M
  • Convertir a celda de texto: Ctrl+MM
  • Agregar una nueva celda a continuación: Ctrl + BB
  • Ejecutar todas las celdas: Ctrl+F9
  • Ejecutar la celda actual: Ctrl+Intro
  • Guardar cuaderno: Ctrl+S
  • Mostrar atajos de teclado: Ctrl+MH

Todos los accesos directos se pueden editar para satisfacer las necesidades de cada usuario.

En la barra de tareas de la izquierda, puede ver la tabla de contenido de su cuaderno que muestra todas las marcas de encabezados de forma estructurada, fragmentos de código útiles, archivos y una herramienta de búsqueda y reemplazo.

Barra de tareas

Para comenzar a codificar, en la parte superior derecha puede ver el botón de conexión, así que asegúrese de hacer clic en él. Cuando esté conectado, verá algo como esto:

Recursos

Importar bibliotecas o instalar dependencias en Google Colab

Importar bibliotecas e instalar dependencias en Google Colab es bastante fácil. Para ello, se utilizan los comandos habituales de !pip install e import seguidos del nombre de las bibliotecas/dependencias que se quieran instalar o importar.

Una gran ventaja de Google Colab es que viene con muchas dependencias preinstaladas que son usadas con bastante frecuencia.

Cualquier instalación solo permanece durante la duración de la sesión, por lo que si se cierra esta, se tendrá que ejecutar de nuevo cada vez que abra el proyecto y quiera utilizarla.

Se puede verificar qué versión de una biblioteca se está usando con !pip show. Por ejemplo, para verificar qué versión de TensorFlow seestá usando, se usaría !pip show tensorflow

Biblioteca tensorflow

Para actualizar una biblioteca ya instalada a la última versión, se utiliza !pip install –upgrade y el nombre de la biblioteca, en este caso, por ejemplo, tensorflow

actualización tensorflow

Y finalmente para instalar una versión específica, se debe indicar !pip install tensorflow==2.8 poniendo el nombre de la biblioteca y la versión correspondiente.

Habilitar el uso de GPU/TPU

Para habilitar una GPU o TPU en Google Colab es necesario dirigirse a la sección "Entorno de ejecución", seleccionar "Cambiar tipo de entorno de ejecución" y seleccionar GPU o TPU.

Cambiar tipo de entorno de ejecución

Configuración entorno de ejecución

Debido a la naturaleza especializada de TPU, existen algunas prácticas que se pueden usar para ayudar a optimizar el flujo de datos y sacarle el máximo potencial.

La sección "TPU en Colab" de los documentos de Google Colab destaca algunos de estos.

Una gran herramienta para trabajo colaborativo y Machine Learning

Google Colab es especialmente funcional para proyectos de Machine Learning ya que libera al usuario de tener que tener un equipo potente ofreciendo potencia suficiente para escribir y ejecutar código python que necesite gran potencial de cómputo.

Además, tiene otras funciones interesantes, como Markdown, que muestra muchas ecuaciones matemáticas, Google Colab magic que es un conjunto de comandos del sistema que se puede ver como un mini lenguaje de comandos extenso, widgets personalizados, formularios, etc.

Si quieres profundizar más en el aprendizaje y uso de esta plataforma, puedes echar un vistazo a Colaboratory.

Y, si te ha gustado el artículo, y quieres leer más escritos por mí, puedes ir a mi perfil.

Categorizado en: Informática y TICS

Solicita información de nuestros cursos y masters




    Información básica sobre Protección de Datos. Haz clic aquí

    Acepto el tratamiento de mis datos con la finalidad prevista en la información básica

    ¿Quieres más artículos de Informática y TICS ?

    Selecciona la categoría que más te interese

    ¡Descubre los secretos de inesem en nuestro canal de Telegram!

    Artículos más leídos

    Descubre Territorio Inesem

    Disfruta del mejor contenido con los últimos podcast y webinars

    ES EL MOMENTO

    Comienza tu futuro de la mano de INESEM Business School con el programa de

    EXECUTIVE MASTERS

    Únete al selecto grupo de alumnos que han conseguido alcanzar una carrera de éxito en las profesiones más demandadas.

    ÚNETE AL EQUIPO DE REDACCIÓN

    Comparte tu conocimiento con otros profesionales

    Saber más